Object-oriented Programming for Data Science
5 ECTS Deutsch M.Eng. M.Sc.
Letzte Aktualisierung: 28.02.2025
Grunddaten
Kürzel OPDS MMW
Dauer des Moduls 1 Semester
Angeboten im Wintersemester
Veranstaltungsort Gummersbach
Teil von Obermodul
Verantwortliche
Prüfung
Prüfungsformen
Hausarbeit
Mündliche Prüfungen
Präsentation
Prüfungsphasen
Keine Angabe
Prüfende
1. Christian Wolf
2. Elena Algorri
Workload
Vorlesung 75 h
Übung 0 h
Seminar 0 h
Praktikum 0 h
Projektbetreuung 0 h
Projektarbeit 75 h
Selbststudium 0 h
Gesamt 150 h
Studiengänge
Pflichtmodul
Automation & IT PO-3PO-4
Sem. 1, 2
Wirtschaftsingenieurwesen PO-2
Sem. 1, 2
Wahlmodul
Keine Zuordnung
Voraussetzungen
Zwingend
Grundkenntnisse in der Programmierung
Angestrebte Lernergebnisse
After Attending this course students will be able to
- apply the advanced principles and concepts of Object Oriented Programming and develop rograms for basic data analytics,
- design and write object oriented programs using advanced Object Oriented constructs in Python,
- modify an existing Object-Oriented program,
- extensively test an Object-Oriented program,
- construct Program Libraries,
- demonstrate an understanding of the underlying principles and concepts of Object-Oriented Programming,
- document an Object-Oriented program, and
- perform basic data analytics,
by
- understanding abstract data types, classes, objects, messages, Instance variables, methods, encapsulation, private and public access, class variables, constructors, class interface, class implementation.
- understanding classes and objects, private and public class members, constructors, initialisation list, static data members, overloading, inline, separation of interface and implementation.
- understanding Data structures, iterators and containers.
- using error handling and debugging practices
in order to
- solve data science tasks by developing fast and reliable object-oriented software, and
- be qualified for a professional career as automation engineer developing digitalindustrial solutions.
Modulinhalte
a) Classes, Abstract Classes, Methods, Variables
- Abstract data types, classes, objects, messages, Instance variables, methods, encapsulation, private and public access, class variables, constructors, class interface, class implementation.
- Classes and objects, private and public class members, constructors, initialisation list, static data members, overloading, inline, separation of interface and implementation.
b) Composition
- Data structures, iterators and containers.
- Design, code and test a series of object-oriented programs to re-enforce lecture content.
c) Destructors
- Exception handling.
- Function overloading. Operator overloading.
- Generic Types, Static and Dynamic Binding, Polymorphism, Overloading.
- Inheritance: Types of Inheritance, Construction, Destruction, Multiple Inheritance.
d) Data analysis functions
- Data Preprocessing (Outlier Removal, Filters, Smoothening, etc.)
- Regression functions
- Classification methods
- Machine Learning models i.e. Random Forest
- AI models i.e. Neural Networks
Lehr- und Lernmethoden (Medienformen)
Seminaristischer Unterricht, Projektarbeit, Fallstudien
Empfohlene Literatur
- Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython (ISBN: 1491957662)
- Einstieg in Python: Die Einführung für Programmieranfänger, inkl. Objektorientierung (ISBN: 3836273799)
- Machine Learning mit Python und Keras, TensorFlow 2 und Scikit-learn (ISBN: 374750213X)
Besonderheiten
Keine Angabe