Object-oriented Programming for Data Science
5 ECTS Deutsch M.Eng. M.Sc.
Letzte Aktualisierung: 14.07.2025
Grunddaten
Kürzel OPDS MMW
Dauer des Moduls 1 Semester
Angeboten im Wintersemester
Veranstaltungsort Gummersbach
Teil von Obermodul
Verantwortliche
Modulverantwortung
PK
Peter Kern
Prof. Dr.
CW
Christian Wolf
Prof. Dr.
Lehrende
PK
Peter Kern
Prof. Dr.
CW
Christian Wolf
Prof. Dr.
Prüfung
Prüfungsformen
Hausarbeit
Mündliche Prüfung
Präsentation
Prüfungsphasen
Keine Angabe
Prüfende
1. Christian Wolf
2. Elena Algorri
Workload
Vorlesung 75 h
Übung 0 h
Seminar 0 h
Praktikum 0 h
Projektbetreuung 0 h
Projektarbeit 75 h
Selbststudium 0 h
Gesamt 150 h
Studiengänge
Pflichtmodul
Automation & IT PO-3PO-4
Sem. 1, 2
Wirtschaftsingenieurwesen PO-2
Sem. 1, 2
Wahlmodul
Keine Zuordnung
Voraussetzungen
Zwingend
Grundkenntnisse in der Programmierung
Angestrebte Lernergebnisse
After Attending this course students will be able to
- apply the advanced principles and concepts of Object Oriented Programming and develop rograms for basic data analytics,
- design and write object oriented programs using advanced Object Oriented constructs in Python,
- modify an existing Object-Oriented program,
- extensively test an Object-Oriented program,
- construct Program Libraries,
- demonstrate an understanding of the underlying principles and concepts of Object-Oriented Programming,
- document an Object-Oriented program, and
- perform basic data analytics,
by
- understanding abstract data types, classes, objects, messages, Instance variables, methods, encapsulation, private and public access, class variables, constructors, class interface, class implementation.
- understanding classes and objects, private and public class members, constructors, initialisation list, static data members, overloading, inline, separation of interface and implementation.
- understanding Data structures, iterators and containers.
- using error handling and debugging practices
in order to
- solve data science tasks by developing fast and reliable object-oriented software, and
- be qualified for a professional career as automation engineer developing digitalindustrial solutions.
Modulinhalte
a) Classes, Abstract Classes, Methods, Variables
- Abstract data types, classes, objects, messages, Instance variables, methods, encapsulation, private and public access, class variables, constructors, class interface, class implementation.
- Classes and objects, private and public class members, constructors, initialisation list, static data members, overloading, inline, separation of interface and implementation.
b) Composition
- Data structures, iterators and containers.
- Design, code and test a series of object-oriented programs to re-enforce lecture content.
c) Destructors
- Exception handling.
- Function overloading. Operator overloading.
- Generic Types, Static and Dynamic Binding, Polymorphism, Overloading.
- Inheritance: Types of Inheritance, Construction, Destruction, Multiple Inheritance.
d) Data analysis functions
- Data Preprocessing (Outlier Removal, Filters, Smoothening, etc.)
- Regression functions
- Classification methods
- Machine Learning models i.e. Random Forest
- AI models i.e. Neural Networks
Lehr- und Lernmethoden (Medienformen)
Seminaristischer Unterricht, Projektarbeit, Fallstudien
Empfohlene Literatur
- Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython (ISBN: 1491957662)
- Einstieg in Python: Die Einführung für Programmieranfänger, inkl. Objektorientierung (ISBN: 3836273799)
- Machine Learning mit Python und Keras, TensorFlow 2 und Scikit-learn (ISBN: 374750213X)
Besonderheiten
Keine Angabe